
B.3.  Phase-Amplitude Method-- E.Y. Sidky and I. Ben-Itzhak 

Frequently in physics one-dimensional potentials are employed to model quantum 

systems, for example, alpha decay, nano-structures, field ionization or molecular ion 

dissociation.  Even such simplified models can be difficult to solve if the potential is 

complicated, the reduced mass is large or tunneling is important.  Thus, one often resorts to the 

semi-classical approximation [1,2].  For finding energy levels of one-dimensional potentials such 

an approximation is adequate; however, if one is interested in the lifetime of metastable states, 

which decay through tunneling, semi-classical theory can be very inaccurate.  Numerically exact 

treatments are available [3-5]; however, these methods are not easy to apply mainly because of 

the time consuming search for narrow resonances coupled with the difficulty to define automatic 

criteria for such searches.  Moreover, most methods rely on direct integration of the Schrödinger 

equation, which is numerically challenging when many nodes in the wave function are present or 

there is a strong exponential growth caused by large potential barriers.  Responding to the need 

for an accurate, easy to use replacement for the commonly used semi-classical program [6], we 

have developed a general utility program (available upon request) based on improvements 

[Publication #81] to the Milne phase-amplitude method [7].  We also have applied it in the area 

of molecular ion physics [8] [Publication #86] and field ionization [10]. 

The wave function for the Milne method [7] is expressed in terms of two real variables 
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α is the amplitude, and φ is the phase of the wave function.  Substituting ψ into the wave 

equation leads to two coupled non-linear equations for α and φ 
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where )).((2)(2 rVErk −= µ  E is the energy; V(r) is the potential and µ is the reduced mass. 

The phase-amplitude parameterization is related to semi-classical theory, which is 

obtained simply by setting 22 / drd α  to zero, and as such it lends itself well to numerical solution 

of the Schrödinger equation since α and φ are smooth functions.  The Milne method, however, 

does not treat potential barriers effectively.  The amplitude diverges exponentially in classically 

forbidden regions, and it will oscillate wildly upon traversing a barrier. 



 We have made the following improvements to the Milne theory [7] in order to extend its 

applicability to any one-dimensional system [Publication #81]: 

1.  Replaced amplitude α with the log-amplitude γ=ln(α).  Solving for the log-amplitude 

allows for accurate evaluation of the wave function in classically forbidden regions, since it does 

not diverge rapidly. 

2.  Developed automatic scheme to divide potential into sections in which phase-

amplitude parameters vary smoothly.  This is necessary to build a solution valid over the whole 

domain of the system with a minimum of numerical effort. 

3.  Showed how the phase dependence on energy can be used to find resonances and their 

widths.  Figure 1 shows how the Milne phase varies with energy for the metastable electronic 

ground state of 3He4He2+.  Results are obtained from the He2
2+ potential energy curve computed 

by Ackermann and Hogreve [9].  Four vibrational resonances are found and their mean lifetimes 

range from 378 s for ν=0 to 2.6 ps for ν=3. 
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In addition to the article describing the extensions to the Milne method [Publication #81], 

we have created a versatile utility program for analyzing one-dimensional problems.  As input 

one simply gives the reduced mass of the system, the energy at which a wave function 

calculation is desired, the energy range over which one wants a scan for resonances and bound 

states, and the potential in numerical and/or analytic form.  As output one gets bound state 

 
Figure 1.  The resonances of 
3He4He2+ found by the Phase-
Amplitude method.  Top panel:  The 
phase and the natural logarithm of its 
derivative as a function of energy. 
Resonances are associated with a shift 
of π in the former and a peak in the 
latter.  Bottom panel:  The shape of 
the φ ′  peak for the ν=3 resonance.  A 
Lorentzian + constant fit the peak 
nicely. 



energies, resonance energies and widths, and the corresponding wave functions.  It is important 

to note that continuum wave functions can be evaluated as easily and one can compute overlap 

integrals for bound free transitions.  The program has already been employed for a variety of 

purposes: finding resonances in the CH2+ system, which is expected to decay by tunneling if it 

has metastable states [Publication #86]; calculating wave functions needed to evaluate the 

predissociation lifetimes for some states of CO2+ [8]; computing tunneling rates of all He2
2+ 

isotopes for future experiments (see proposal A.3.7); and computing field ionization rates of a 

model H2
+.  Furthermore, the simplicity of the method and program makes it a nice tool for 

teaching quantum mechanics and numerical methods at the graduate and undergraduate level, as 

we have done recently. 
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